目前,我國配電系統的電源中性點一般是不直接接地的,所以當線路單相接地時流過故障點的電流實際是線路對地電容產生的電容電流。據統計,配電網的故障很大程度是由于線路單相接地時電容過大而無法自行熄弧引起的。因此,我國的電力規程規定當10kV和35kV系統電容電流分別大于30A和10A時,應裝設消弧線圈以補償電容電流,這就要求對配網的電容電流進行測量以做決定。另外,配電網的對地電容和PT的參數配合會產生PT鐵磁諧振過電壓,為了驗證該配電系統是否會發生PT諧振及發生什么性質的諧振,也必須準確測量配電網的對地電容值。傳統的測量配網電容電流的方法有單相金屬接地的直接法、外加電容間接測量法等,這些方法都要接觸到一次設備,因而存在試驗危險、操作繁雜,工作效率低等缺點。
采用大屏幕液晶顯示,中文菜單,操作非常簡便,且體積小、重量輕,便于攜帶進行戶外作業,接線簡單,測試速度快,數據準確性高,大大減輕了試驗人員的勞動強度,提高了工作效率。
四、測量原理
是從PT 開口三角側來測量系統的電容電流的。其測量原理如圖二所示。
圖二 測量原理圖
在圖二中,從
PT開口三角注入一個異頻的電流(非50Hz的交流電流,目的是為了消除工頻電壓的干擾),這樣在PT高壓側就感應出一個按變比減小的電流,此電流為零序電流,即其在三相的大小和方向相同,因此它在電源和負荷側均不能流通,只能通過PT和對地電容形成回路,所以圖二又可簡化為圖三。
圖三 簡化物理模型
根據圖三的物理模型就可建立相應的數學模型,通過檢測測量信號就可以測量出三相對地電容值3C0,再根據公式I=3ωCOUφ(Uφ為被測系統的相電壓)計算出配網系統的電容電流。
五、配電網中PT接線方式及PT的變比
配電網中的PT接線方式和PT的變比會對測試儀的測量結果產生很大的影響,如果PT的接線方式和變比選擇不正確,測量結果將不是系統的真實電容電流值,而是真實值乘以兩變比之商的平方倍。因此為了測得正確的數據,在測試前必須對配電網中PT的接線方式及PT變比有一個清晰的了解。LYDRC-III系列配網電容電流測試儀采用循環選擇的方式來選擇系統PT的各種接線方式及變比,這樣用戶無需繁瑣地輸入各種PT接線方式下的變比,使測量工作更簡便、更快捷。本儀器提供五種“方式”的選擇,即3PT、3PT1、4PT,4PT1、1PT,每種方式代表一種PT的接線方式和不同的變比,這五種方式基本上包括配電系統中各種常用的PT接線方式。
目前,我國配電網的PT接線方式有以下幾種:
1、3PT接線方式:
這種接線方式分“N接地”、“B相接地”兩種,分別如圖四和圖五所示。
對于這兩種方式,均從N-L兩端注入測試信號。根據所用PT的不同,組成開口三角的二次繞組可能
電網系統的線電壓,如
6kV、10kV或35kV)。這三個變比就分別對應于測試儀中“方式”選擇中的3PT、3PT1三種方式,通過短按“方式/測量”鍵來進行方式選擇。
圖四 N接地方式
圖五 B相接地方式
圖四、圖五所示的系統運行方式是從開口三角測量系統電容電流時所必須的運行方式,而對于一般的配網系統,并不都是處于這樣的運行方式下,例如在系統中還接有消弧線圈、PT高壓側中性點接有高阻消諧器、PT開口三角接有二次消諧裝置等。這時,為了使用測試儀進行容性電流的測量,必須將運行方式轉換為圖四或圖五所示的運行方式。
常見的采用3PT接線方式的配網其運行方式如圖六所示。
圖六 常見的采用3PT接線方式的配網運行方式
這時,使用測試儀測量配網電容電流前必須完成以下操作:
1) 檢查測量用的PT高壓側中性點是否安裝高阻消諧器,如有,將其短接。從測量原理可知,選用哪組PT進行測量,我們就只考慮這組PT的接線情況。而無需關心系統內的其他PT的情況。如果系統中有些PT安裝高阻消諧器,有些沒安裝,則完全可以從沒有安裝高阻消諧器的PT進行測量,這樣可以省去短接消諧器的工作。
2) 檢查消弧線圈是否全部退出運行。在有電氣聯系的被測電壓等級系統中所有消弧線圈均要退出運行,并非只退出該變電站的消弧線圈。同時只考慮被測電壓等級的情況,無需考慮其他電壓等級的情況。例如,被測變電站A為10kV系統,并通過聯絡線與變電站B的10kV系統相連,變電站A有2臺消弧線圈,變電站B有1臺消弧線圈,則測量時有電氣聯系的這3臺消弧線圈均要退出運行;而35kV系統有無消弧線圈則無需考慮。
3) 退出PT 開口三角的消諧裝置。如果經過實測證明,開口三角所接的某些廠家某些型號的二次消諧裝置對測量結果沒有影響,則消諧裝置可以不退出運行。一般對于微電腦控制的消諧器,其只有在系統有諧振發生時才動作,該類消諧器一般對測量無影響。
4) 如果PT二次側并列運行(很少見),則將其改為單獨運行。
5) 確保將測試儀的電流輸出端正確接到圖四的開口三角N-L上。一般在二次的端子編號為N600和 L630。為了確保連接正確,可以按下列方法進行檢查:(1)用萬用表分別測量PT二次側三相電壓和開口三角電壓;將三相電壓中的*大值減去*小值得到的差和開口三角電壓比較,如果兩者差不多,就說明找到的開口三角端是正確的;如果兩者差別很大,則說明沒有正確找到開口三角端。例如,測量得到三相電壓分別為61V、60V、59.5V,則正確的開口三角電壓應為1.5V左右,如果測量得到的開口三角電壓僅為0.2V,說明所找的開口三角端不正確或PT開口三角連線已經斷開(在現場實測中發現有多個變電站的PT 開口三角連線斷開情況)。
6) 選擇正確的PT變比,也就是選擇正確的PT接線方式。配網電容電流測試儀是通過選擇PT接線方式和系統電壓來達到選擇PT變比的作用,這樣對于試驗人員會更方便、快捷。PT一般是采用100/3V的二次繞組連接成開口三角,但也有特殊的情況,有些變電站的PT采用100V二次繞組組成開口三角。為了確保選擇變比的正確,可以通過測量組成開口三角的各繞組的電壓來確定。
完成以上操作后,就可以運用配網電容電流測試儀進行準確測量電容電流了。
2、4PT接線方式
在測量中,如系統有3PT的接線PT,盡量從3PT中測量,盡量避免采用4PT接線方式。
大部分變電站中的4PT的接線方式有兩種接法,分別如圖七和圖八所示。對于圖七中這種4PT的接線方式,組成星形的三個PT的開口三角側被短接,系統零序電壓由第四個PT的測量線圈來測量,各相電壓分別從A-N、B-N、C-N端測量。這種接線方式下,系統單相接地時N-L端的電壓為57.7V。
圖七 4PT接線方式一
圖八 4PT接線方式二
圖八中的接線和圖七中的接線唯壹區別是在N-L端串接入第四個PT的33V二次線圈,這樣當系統單相接地時,N-L兩端電壓為91V(即57.7V+33.3V)。
在圖七和圖八中,測量信號都是從N-L端注入。
在圖七中,零序
PT(即第4個PT)的二次零序繞組是ox-oa繞組,其電壓通常為V,則測量
時
PT變比為。這種接線方式和變比下,對應于測試儀的“4PT”方式。也就是說,如果接線方式如圖七所示,則在測量電容電流前必須通過短按“方式/測量”按鈕來選擇 “4PT”方式。
在圖八中,零序
PT(即第4個PT)的二次零序繞組是由主繞組ox-oa繞組和副繞組oxo-oao串聯組成,主繞組ox-oa的電壓為100/√3(V),副繞組oxo-oao的電壓為100/3V,則測量時PT變比為:
。這種接線方式下,對應于測試儀的“4PT1”接線方式。
其中, 為配電網系統的線電壓,如6kV、10kV或35kV。
第三種4PT接線方式如圖九所示。這種接線方式比較少見,但在系統中還是存在。在圖九中這種接線方式三相PT的三個二次輔助繞組即:1ao-1xo、2ao-2xo、3ao-3xo組成開口三角L601-L602,oa-ox和oao-oxo為零序PT的兩個二次繞組,它們與開口三角L601-L602組成一個大的開口三角N600-L601。相電壓也是從a、b、c與N600中測量。
對于這種接線方式,將L601和L602短接,并從N600和L601端注入測量電流,接線方式選擇“4PT1”即可。
圖九 4PT接線方式三
對于4PT的接線方式,當被測的三相對地電容小于30微法時(10kV電容電流約為55A),測量結果是準確的。但當被測電容太大時,測量結果就會隨電容的增大而偏差較多。如果比較準確測量,可將4PT接線的運行方式轉變為3PT的運行方式,然后按前面所述的3PT方式進行測量。
將4PT接線的運行方式轉變為3PT的運行方式的方法如下:
1) 對于4PT的接線方式一和方式二, 將第四個PT高壓側短接,并將被短接的開口三角側打開,從打開兩側注入電流測量即可。這時4PT接線的運行方式就完全變成了3PT的運行方式。
2) 對于
4PT的接線方式三,將零序PT即圖九中所示的PT4的高壓繞組短接,將儀器的電流輸出端接到圖九中所示的開口三角L601-L602,就可以開始測量了。其接線圖如圖十所示。
圖十 4PT接線方式轉變為3PT接線方式測量示意圖
六、從變壓器中性點測量配網電容電流的方法
“1PT”方式就是外加一個電壓互感器(PT)從變壓器中性點或接地變中性點測量電容電流的方法,是對3PT和4PT方式的補充。這種測量方式的優點就是測試人員不必考慮母線PT組的接線方式,所以在測量過程中也無需二次班組人員配合。
1、測量接線
采用配網電容電流測試儀從變壓器中性點或接地變中性點測量配網電容電流的接線如圖十一所示:
圖十一
圖十一中,
Tr為變壓器35kV側繞組,或是10kV系統的接地變,O為變壓器中性點,Ca、Cb、Cc分別為三相對地電容, PT是外加的一個電壓互感器, AX,ax分別為PT的一、二次繞組,PT的變比為
(即從57V的端子進行測量)。
測量的操作步驟如下:
1) 將儀器接地端子及PT一、二次繞組的X端和x端接地。
2) 將儀器的電流輸出端接到PT的二次側(即57V的端子),再將PT的高壓端A引一根導線,用絕緣桿引到變壓器中性點O。
3) 正確設置測試儀的測量方式:
a) 將測試儀的“系統電壓”選為10kV(因為測量用的PT是10kV的,選擇“系統電壓”和“PT接線方式”起到輸入PT變比的作用)。
b) PT接線方式選1PT。
4) 開始測量,得到測量結果。值得注意的是:如果被測系統是10kV系統,測量結果可以直接讀取;對于其他電壓等級,電容量是可以直接讀取的,但電容電流測量值要乘上一個該電壓和10kV的比值,因為對地電容量一定,電容電流與系統電壓成正比關系。如被測系統為35kV,則真實的電容電流值為測試儀的“顯示值”乘以3.5(即35kV/10kV)。
5) 測量完畢,先取下絕緣桿,再收拾試驗現場。
2、測量注意事項
1) PT的一、二次繞組及測試儀要接好地。
2) 要使用合格的絕緣桿將引線引到變壓器中性點O。
3) 引線與周圍的設備及試驗人員保持**距離。
3、 外加PT進行測量的必要性
采用上述方法進行電容電流測量時要外加一個PT,這是為了將高壓和低壓進行**隔離,保證試驗人員及測試儀器的**。
我們知道,配網系統正常運行時,變壓器中性點或接地變中性點的對地電壓是比較低的,一般只有幾十伏到幾百伏。但如果測量時系統發生單相接地,變壓器中性點或接地變中性點的對地電壓就上升為相電壓,對35kV和10kV系統而言,此時中性點的電壓分別為20.2kV和5.8kV,如果不經過PT而直接將儀器引線到中性點進行測量,當系統發生單相接地時,就會有很高的電壓加在儀器上,從而危及儀器和試驗人員的**,后果不堪設想。有了PT的隔離,PT的二次側電壓才200V或58V,測試儀是能承受這樣的電壓的,對試驗人員也是**的。
所以,從**性考慮,從變壓器中性點或接地變中性點測量配網電容電流時采用PT隔離是十分必要的。
七、使用方法
1) 首先將測試儀可靠接地。
2) 對于3PT方式按圖十二接線,將測試儀的電流輸出端與PT開口三角端連接,對于4PT接線方式的系統,則將儀器的電流輸出端與圖四或圖五中所示的N-L端相連即可;對于1PT方式應按圖十一接線。
3) 接通電源,開機后儀器自檢,顯示圖十三所示界面,自檢通過后,進入圖十四所示界面。
4) 在圖十四界面下,按 “電壓選擇”鍵,可以循環選擇被測系統線電壓:
10kV ->20kV->35kV->66kV->1kV->3kV->6KV->6.3KV->10KV
圖十二 測量接線圖圖
圖十三 自檢界面 圖十四 電壓等級及測量方式選擇界面
選擇系統線電壓后,根據系統的
PT實際接線方式和變比,短按“方式/測量”鍵循環選擇測量方式: 3PT->4PT->4PT1->3PT1->1PT->3PT
其中:
3PT——
3PT接線方式一,組成開口三角的繞組電壓為100/3(V),PT變比為 ;
3PT1——
3PT接線方式二,組成開口三角的繞組電壓為100(V),PT變比為 ;
4PT——
4PT接線方式一,第四個PT的變比為 ;
4PT1——
4PT接線方式二,第四個PT變比為;
1PT——在變壓器中性點或接地變中性點上人為外接一個電壓互感器,此
PT變比為 。
5) 選擇接線方式后,長按“方式/測量”鍵直到液晶屏顯示圖十五所示界面,這時儀器開始進行測量。測量完成后,液晶屏顯示出所測系統的對地電容值和電容電流,如圖十六所示。在測量過程中,可隨時按下“復位”鍵中斷儀器的測試,此時儀器會顯示圖十三所示的自檢界面進行自檢,自檢完成后進入選擇界面。
注:測量過程中“請稍候”后的數字并非測量時間,出現短暫停留屬正常現象。
圖十五 測量界面 圖十六測量完畢后所顯示界面
八、測量其他電壓等級電網的電容電流
由于LYDRC-III系列配網電容電流測試儀是從PT的二次側測量系統的對地電容值,從而計算出系統的電容電流值,因此PT的變比和PT的接線方式直接影響測量結果。為了便于使用,本儀器不是直接輸入PT的變比,而是通過選擇“系統電壓”和“PT的接線方式”來達到輸入變比的目的。例如,選擇“10kV”和“3PT1”的方式,則測試儀
默認
PT的變比為,如果現場測量中PT的變比與測試儀的默認值不同,則必須經過歸算
才能得到正確的測量結果。系統對地電容測量值的歸算公式為:
也就是說,真實的對地電容值等于測試儀顯示值乘以一個修正系數,這個修正系數等于測試儀默認變比和
PT真實變比商的平方。得到電容值后就可以利用公式計算出系統電容電流值。
使用配網電容電流測試儀可以測量中性點不接地的任意電壓等級電網的電容電流,考慮到儀器使用的方便性,本測試儀僅提供了配電網常見的電壓等級(1kV, 3kV,6kV,6.3KV、10kV,20KV、35kV、66KV)以供選擇,但本測試儀同樣可以應用于其他電壓等級的電網。這時,由于實際的PT變比與測試儀提供選擇的變比不同,就存在一個測量結果歸算的問題,歸算就是將測量結果乘以一個歸算系數,具體的歸算方法如下:選擇一個與真實電網線電壓等級UZ相近的“系統線電壓”Un,測量方法和上述介紹的方法完全相同,根據上述的歸算公式就可以知道:將測量出的電容值乘以歸算系數(Un/UZ)2 就是所測系統真實的電容值,而電容電流的真實值則是顯示值乘以(Un/UZ)。例如,測量電壓等級為18.5kV的發電機系統,由于本測試儀沒有提供18.5kV系統線電壓供選擇,可以在測試儀中選擇“系統線電壓”為10kV進行測量,這時測試儀則以10kV為默認值,而系統實際的PT變比是以18.5kV為基準的,因此必須將電容的測量結果乘以系數(10/18.5)2=0.292后才是真實的電容測量結果,電容電流的真實值則是顯示結果乘以(10/18.5)=0.54。同樣,也可以選擇“系統線電壓”為35kV,但這時電容量的歸算系數是(35/18.5)2=3.579,電容電流的歸算系數是(35/18.5)=1.892。
九、儀儀器檢驗和日常校準
為了LYDRC-III系列配網電容電流測試儀是否正常,可以在
PT不帶電的情況下對測試儀進行檢驗和校準。檢驗方法如下:取一個10kV(其他電壓等級亦可)的PT,在高壓端接入一個已知電容量的電容(耐壓大于100V即可),將二次側主繞組
a-x端(電壓為)與測試儀的電流輸出端連接,即從a-x端進行測量。選擇測試儀的系統線電壓為“10kV”(如果PT是其他電壓等級的,則選擇相應的系統線電壓)、方式為“1PT”,長按“方式/測量”鍵進行測量,如果測量結果和已知電容的電容量一致,說明該測試儀是正常的,測量是準確的,可以用于現場測量。
十、常見的故障及處理
故障現象
|
故障原因
|
解決辦法
|
開機后顯示屏無顯示
|
1. AC220V電源接觸不佳
2. 電源保險管損壞
|
1. 檢查電源連接,重新接好
2. 更換保險管
|
測量后顯示“電路開路”
|
1.接線錯誤,測量回路開路
2.PT開口三角的二次回路開路
3.電流輸出端的保險管損壞
|
1. 檢查接線并更正
2. 排除PT故障后重新測量
3. 更換保險管
|
測量后顯示“999.99”
|
1.電網的中性點補償裝置未退出
2.電網中性點有接地現象
3.測試儀的電流輸出端被短路
|
1. 退出電網的中性點補償裝置
2. 排除電網中性點接地現象
3. 檢查儀器電流輸出端,排除短路
|
十一、儀器成套性
測試儀主機 一臺
測試電纜 一套
保險管(2A) 三個
保險管(1A) 三個
說明書 一本
測試報告 一份
合格證 一張
保修卡 一張
十二、維修保養和售后服務:
1、儀器應放置于干燥、通風的地方,防止因受潮而損壞內部元件。
2、儀器搬運和安放過程中應小心謹慎,避免劇烈震動和摔落。
3、正常情況下不允許拆開機箱,插拔內部機件,以免造成不必要的損失。
4、凡購本公司產品隨機攜帶產品保修單,訂購產品交貨時,請當場檢驗并填好保修單。
5、自購機之日起,憑保修單保修一年,終身維護。在保修期內,維修不收維修費;保修期外,維修調試收取適當費用。
6、屬下列情況之一者不予保修:
1)用戶對儀器有自行拆卸或對儀器工藝結構有人為改變。
2)因用戶保管或使用不當造成儀器的嚴重損壞。
3)屬于用戶其它原因造成的損壞。
公司坐落于****大城市—上海,擁有現代化標準的生產廠房和完善的制造、加工、檢測設備,并依托華
交通大學、復旦大學、上海大學等院校的人力資源和技術力量,結合優良的硬件設施與優良的集體智慧,形
成企業的核心競爭力。公司具有強大的產品研發、生產、制造能力,以雄厚的技術力量為基礎,優化改革,
推陳出新,從而使產品質量和生產工藝得到不斷的提高。公司主要的產品有:精密計量儀、高壓試驗儀、串
聯諧振裝置、油試驗設備、二次保護測量設備等共六個大類近百種產品。能夠充分滿足廣大顧客的各類需
求。